Close Menu
  • Home
  • Business
  • Digital Marketing
  • Educational
  • Food
  • Health
  • Political
    • Tech
      • Travel
Facebook X (Twitter) Instagram
Telugu Pitta
  • Home
  • Business
  • Digital Marketing
  • Educational
  • Food
  • Health
  • Political
    • Tech
      • Travel
Facebook X (Twitter) Instagram YouTube
Telugu Pitta
Food

Diatom-mediated food web functioning under ocean artificial upwelling

techbalu06By techbalu06February 17, 2024No Comments9 Mins Read

[ad_1]

  • Prentice, A. M. Starvation in humans: Evolutionary background and contemporary implications. Mech. Ageing Dev. 126, 976–981 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Godfray, H. C. J. et al. Food security: The challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Fuhrman, J. et al. Food-energy-water implications of negative emissions technologies in a +1.5°C future. Nat. Clim. Change 10, 920–927 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Duarte, C. M. et al. Will the oceans help feed humanity?. Bioscience 59, 967–976 (2009).

    Article 

    Google Scholar 

  • Hicks, C. C. et al. Harnessing global fisheries to tackle micronutrient deficiencies. Nature 574, 95–98 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Pan, Y. W. et al. Research progress in artificial upwelling and its potential environmental effects. Sci. China-Earth Sci. 59, 236–248 (2016).

    Article 
    ADS 

    Google Scholar 

  • Baumann, M. et al. Effect of intensity and mode of artificial upwelling on particle flux and carbon export. Front. Mar. Sci. 8, 1579 (2021).

    Article 

    Google Scholar 

  • Gattuso, J.-P. et al. The potential for ocean-based climate action: Negative emissions technologies and beyond. Front Clim. 2, 37 (2021).

    Article 

    Google Scholar 

  • Gao, G. et al. A review of existing and potential blue carbon contributions to climate change mitigation in the Anthropocene. J. Appl. Ecol. 59, 1686–1699 (2022).

    Article 
    CAS 

    Google Scholar 

  • Baumann, M. et al. Counteracting effects of nutrient composition (Si: N) on export flux under artificial upwelling. Front. Mar. Sci. 10, 1084 (2023).

    Article 

    Google Scholar 

  • Jürchott, M., Oschlies, A. & Koeve, W. Artificial upwelling—A refined narrative. Geophys. Res. Lett. 50, e2022GL101870 (2023).

    Article 
    ADS 

    Google Scholar 

  • Ryther, J. H. Photosynthesis and fish production in the sea. Science 166, 72–76 (1969).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Uitz, J. et al. Phytoplankton class-specific primary production in the world’s oceans: Seasonal and interannual variability from satellite observations. Glob. Biogeochem. Cycle https://doi.org/10.1029/2009GB003680 (2010).

    Article 

    Google Scholar 

  • Hansen, B., Bjornsen, P. K. & Hansen, P. J. The size ratio between planktonic predators and their prey. Limnol. Oceanogr. 39, 395–403 (1994).

    Article 
    ADS 

    Google Scholar 

  • Sommer, U. et al. Pelagic food web configurations at different levels of nutrient richness and their implications for the ratio fish production: Primary production. Hydrobiologia 484, 11–20 (2002).

    Article 

    Google Scholar 

  • Eddy, T. D. et al. Energy flow through marine ecosystems: Confronting transfer efficiency. Trends Ecol. Evol. 36, 76–86 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Cury, P. et al. Small pelagics in upwelling systems: Patterns of interaction and structural changes in “wasp-waist” ecosystems. ICES J. Mar. Sci. 57, 603–618 (2000).

    Article 

    Google Scholar 

  • Chavez, F. P. & Messie, M. A comparison of eastern boundary upwelling ecosystems. Prog. Oceanogr. 83, 80–96 (2009).

    Article 
    ADS 

    Google Scholar 

  • Goldenberg, S. U. et al. Nutrient composition (Si:N) as driver of plankton communities during artificial upwelling. Front. Mar. Sci. 9, 1015188 (2022).

    Article 

    Google Scholar 

  • Ortiz, J. et al. Artificial upwelling in singular and recurring mode: Consequences for net community production and metabolic balance. Front. Mar. Sci. 8, 1976 (2022).

    Article 

    Google Scholar 

  • Ban, S. H. et al. The paradox of diatom-copepod interactions. Mar. Ecol.-Prog. Ser. 157, 287–293 (1997).

    Article 
    ADS 

    Google Scholar 

  • Saiz, E. & Calbet, A. Copepod feeding in the ocean: Scaling patterns, composition of their diet and the bias of estimates due to microzooplankton grazing during incubations. Hydrobiologia 666, 181–196 (2011).

    Article 
    CAS 

    Google Scholar 

  • Decima, M. & Landry, M. R. Resilience of plankton trophic structure to an eddy-stimulated diatom bloom in the North Pacific Subtropical Gyre. Mar. Ecol.-Prog. Ser. 643, 33–48 (2020).

    Article 
    ADS 

    Google Scholar 

  • Sarthou, G. et al. Growth physiology and fate of diatoms in the ocean: A review. J. Sea Res. 53, 25–42 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Pancic, M. et al. Silicified cell walls as a defensive trait in diatoms. Proc. R. Soc. B-Biol. Sci. 286, 9 (2019).

    Google Scholar 

  • Ianora, A. & Miralto, A. Toxigenic effects of diatoms on grazers, phytoplankton and other microbes: A review. Ecotoxicology 19, 493–511 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lundholm, N. et al. Induction of domoic acid production in diatoms-Types of grazers and diatoms are important. Harmful Algae 79, 64–73 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jonasdottir, S. H. Fatty acid profiles and production in marine phytoplankton. Mar. Drugs 17, 20 (2019).

    Article 

    Google Scholar 

  • Sauterey, B. & Ward, B. Environmental control of marine phytoplankton stoichiometry in the North Atlantic Ocean. Proc. Natl. Acad. Sci. U. S. A. 119, e2114602118 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Thomas, P. K. et al. Elemental and biochemical nutrient limitation of zooplankton: A meta-analysis. Ecol. Lett. 25, 2776–2792 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Mojica, K. D. A. et al. Phytoplankton community structure in relation to vertical stratification along a north-south gradient in the Northeast Atlantic Ocean. Limnol. Oceanogr. 60, 1498–1521 (2015).

    Article 
    ADS 

    Google Scholar 

  • Armengol, L. et al. Planktonic food web structure and trophic transfer efficiency along a productivity gradient in the tropical and subtropical Atlantic Ocean. Sci. Rep. 9, 19 (2019).

    Article 

    Google Scholar 

  • Gillooly, J. F. Effect of body size and temperature on generation time in zooplankton. J. Plankton Res. 22, 241–251 (2000).

    Article 

    Google Scholar 

  • Turner, J. T. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Prog. Oceanogr. 130, 205–248 (2015).

    Article 
    ADS 

    Google Scholar 

  • Treguer, P. et al. Influence of diatom diversity on the ocean biological carbon pump. Nat. Geosci. 11, 27–37 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ortiz, J. et al. Oligotrophic phytoplankton community effectively adjusts to artificial upwelling regardless of intensity, but differently among upwelling modes. Front. Mar. Sci. https://doi.org/10.3389/fmars.2022.880550 (2022).

    Article 

    Google Scholar 

  • Ortiz, J. et al. Phytoplankton physiology and functional traits under artificial upwelling with varying Si:N. Front. Mar. Sci. https://doi.org/10.3389/fmars.2023.1319875 (2024).

    Article 

    Google Scholar 

  • Spilling, K. et al. Microzooplankton communities and their grazing of phytoplankton under artificial upwelling in the oligotrophic ocean. Front. Mar. Sci. https://doi.org/10.3389/fmars.2023.1286899 (2023).

    Article 

    Google Scholar 

  • Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Persson, J. et al. To be or not to be what you eat: Regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos 119, 741–751 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hessen, D. O. et al. Ecological stoichiometry: An elementary approach using basic principles. Limnol. Oceanogr. 58, 2219–2236 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sherr, E. B. & Sherr, B. F. Heterotrophic dinoflagellates: A significant component of microzooplankton biomass and major grazers of diatoms in the sea. Mar. Ecol.-Prog. Ser. 352, 187–197 (2007).

    Article 
    ADS 

    Google Scholar 

  • Stoecker, D. K. & Capuzzo, J. M. Predation on protozoa—Its importance to zooplankton. J. Plankton Res. 12, 891–908 (1990).

    Article 

    Google Scholar 

  • Kiorboe, T. How zooplankton feed: Mechanisms, traits and trade-offs. Biol. Rev. 86, 311–339 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Hessen, D. O. et al. Carbon, sequestration in ecosystems: The role of stoichiometry. Ecology 85, 1179–1192 (2004).

    Article 

    Google Scholar 

  • IPCC (2014) Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland.

  • Martiny, A. C. et al. Regional variation in the particulate organic carbon to nitrogen ratio in the surface ocean. Glob. Biogeochem. Cycle 27, 723–731 (2013).

    Article 
    CAS 

    Google Scholar 

  • Robinson, C. et al. Mesopelagic zone ecology and biogeochemistry—A synthesis. Deep-Sea Res. II-Top. Stud. Oceanogr. 57, 1504–1518 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Anderson, T. R. et al. Metabolic stoichiometry and the fate of excess carbon and nutrients in consumers. Am. Nat. 165, 1–15 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Lee, R. F., Hagen, W. & Kattner, G. Lipid storage in marine zooplankton. Mar. Ecol.-Prog. Ser. 307, 273–306 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Teuber, L. et al. Who is who in the tropical Atlantic? Functional traits, ecophysiological adaptations and life strategies in tropical calanoid copepods. Prog. Oceanogr. 171, 128–135 (2019).

    Article 
    ADS 

    Google Scholar 

  • Smith, M. D., Knapp, A. K. & Collins, S. L. A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology 90, 3279–3289 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Litchman, E., Ohman, M. D. & Kiorboe, T. Trait-based approaches to zooplankton communities. J. Plankton Res. 35, 473–484 (2013).

    Article 

    Google Scholar 

  • Griscom, B. W. et al. Natural climate solutions. Proc. Natl. Acad. Sci. U. S. A. 114, 11645–11650 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, J. J., Keller, D. P. & Oschlies, A. Carbon dioxide removal via macroalgae open-ocean mariculture and sinking: an Earth system modeling study. Earth Syst. Dyn. 14, 185–221 (2023).

    Article 
    ADS 

    Google Scholar 

  • Taucher, J. et al. Enhanced silica export in a future ocean triggers global diatom decline. Nature 605, 696–700 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bach, L. T. et al. Effects of elevated CO2 on a natural diatom community in the subtropical NE atlantic. Front. Mar. Sci. 6, 16 (2019).

    Article 

    Google Scholar 

  • Hernandez-Leon, S. Annual cycle of epiplanktonic copepods in Canary Island waters. Fish Oceanogr. 7, 252–257 (1998).

    Article 

    Google Scholar 

  • Turner, J. T. The importance of small planktonic copepods and their roles in pelagic marine food webs. Zool. Stud. 43, 255–266 (2004).

    Google Scholar 

  • Higgins, H. W., Wright, S. W. & Schluter, L. Quantitative interpretation of chemotaxonomic pigment data. In Phytoplankton Pigments: Characterization, Chemotaxonomy and Applications in Oceanography (eds Roy, S. et al.) (Cambridge University Press, 2011).

    Google Scholar 

  • Krock, B. et al. LC-MS-MS aboard ship: Tandem mass spectrometry in the search for phycotoxins and novel toxigenic plankton from the North Sea. Anal. Bioanal. Chem. 392, 797–803 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Putt, M. & Stoecker, D. K. An experimentally determined carbon—Volume ratio for marine oligotrichous ciliates from estuarine and coastal waters. Limnol. Oceanogr. 34, 1097–1103 (1989).

    Article 
    ADS 

    Google Scholar 

  • Menden-Deuer, S. & Lessard, E. J. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45, 569–579 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • McCutchan, J. H. et al. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378–390 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Dorner, I. et al. Ocean acidification impacts on biomass and fatty acid composition of a post-bloom marine plankton community. Mar. Ecol.-Prog. Ser. 647, 49–64 (2020).

    Article 
    ADS 

    Google Scholar 

  • R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • [ad_2]

    Source link

    Follow on Google News Follow on Flipboard
    techbalu06
    • Website

    Related Posts

    మైనే నుండి ఫ్లోరిడా వరకు ఈస్ట్ కోస్ట్ రీచ్‌ను విస్తరించడానికి CA ఫెరోలితో ఇంటిగ్రిటీ ఫుడ్ మార్కెటింగ్ భాగస్వాములు

    April 12, 2024

    డేటోనా బీచ్ చర్చి ఫుడ్ ప్యాంట్రీ మూసివేతపై నగరంపై దావా వేసింది

    April 12, 2024

    మాసన్స్ మై కలర్‌ఫుల్ కిచెన్ భారతీయ వంటకాలను సరికొత్త స్థాయికి తీసుకువెళుతుంది

    April 12, 2024

    Leave A Reply Cancel Reply

    • Home
    • About us
    • Contact us
    • DMCA
    • Privacy Policy
    © 2026 telugupitta. Designed by telugupitta.

    Type above and press Enter to search. Press Esc to cancel.