[ad_1]
Prentice, A. M. Starvation in humans: Evolutionary background and contemporary implications. Mech. Ageing Dev. 126, 976–981 (2005).
Google Scholar
Godfray, H. C. J. et al. Food security: The challenge of feeding 9 billion people. Science 327, 812–818 (2010).
Google Scholar
Fuhrman, J. et al. Food-energy-water implications of negative emissions technologies in a +1.5°C future. Nat. Clim. Change 10, 920–927 (2020).
Google Scholar
Duarte, C. M. et al. Will the oceans help feed humanity?. Bioscience 59, 967–976 (2009).
Google Scholar
Hicks, C. C. et al. Harnessing global fisheries to tackle micronutrient deficiencies. Nature 574, 95–98 (2019).
Google Scholar
Pan, Y. W. et al. Research progress in artificial upwelling and its potential environmental effects. Sci. China-Earth Sci. 59, 236–248 (2016).
Google Scholar
Baumann, M. et al. Effect of intensity and mode of artificial upwelling on particle flux and carbon export. Front. Mar. Sci. 8, 1579 (2021).
Google Scholar
Gattuso, J.-P. et al. The potential for ocean-based climate action: Negative emissions technologies and beyond. Front Clim. 2, 37 (2021).
Google Scholar
Gao, G. et al. A review of existing and potential blue carbon contributions to climate change mitigation in the Anthropocene. J. Appl. Ecol. 59, 1686–1699 (2022).
Google Scholar
Baumann, M. et al. Counteracting effects of nutrient composition (Si: N) on export flux under artificial upwelling. Front. Mar. Sci. 10, 1084 (2023).
Google Scholar
Jürchott, M., Oschlies, A. & Koeve, W. Artificial upwelling—A refined narrative. Geophys. Res. Lett. 50, e2022GL101870 (2023).
Google Scholar
Ryther, J. H. Photosynthesis and fish production in the sea. Science 166, 72–76 (1969).
Google Scholar
Uitz, J. et al. Phytoplankton class-specific primary production in the world’s oceans: Seasonal and interannual variability from satellite observations. Glob. Biogeochem. Cycle https://doi.org/10.1029/2009GB003680 (2010).
Google Scholar
Hansen, B., Bjornsen, P. K. & Hansen, P. J. The size ratio between planktonic predators and their prey. Limnol. Oceanogr. 39, 395–403 (1994).
Google Scholar
Sommer, U. et al. Pelagic food web configurations at different levels of nutrient richness and their implications for the ratio fish production: Primary production. Hydrobiologia 484, 11–20 (2002).
Google Scholar
Eddy, T. D. et al. Energy flow through marine ecosystems: Confronting transfer efficiency. Trends Ecol. Evol. 36, 76–86 (2021).
Google Scholar
Cury, P. et al. Small pelagics in upwelling systems: Patterns of interaction and structural changes in “wasp-waist” ecosystems. ICES J. Mar. Sci. 57, 603–618 (2000).
Google Scholar
Chavez, F. P. & Messie, M. A comparison of eastern boundary upwelling ecosystems. Prog. Oceanogr. 83, 80–96 (2009).
Google Scholar
Goldenberg, S. U. et al. Nutrient composition (Si:N) as driver of plankton communities during artificial upwelling. Front. Mar. Sci. 9, 1015188 (2022).
Google Scholar
Ortiz, J. et al. Artificial upwelling in singular and recurring mode: Consequences for net community production and metabolic balance. Front. Mar. Sci. 8, 1976 (2022).
Google Scholar
Ban, S. H. et al. The paradox of diatom-copepod interactions. Mar. Ecol.-Prog. Ser. 157, 287–293 (1997).
Google Scholar
Saiz, E. & Calbet, A. Copepod feeding in the ocean: Scaling patterns, composition of their diet and the bias of estimates due to microzooplankton grazing during incubations. Hydrobiologia 666, 181–196 (2011).
Google Scholar
Decima, M. & Landry, M. R. Resilience of plankton trophic structure to an eddy-stimulated diatom bloom in the North Pacific Subtropical Gyre. Mar. Ecol.-Prog. Ser. 643, 33–48 (2020).
Google Scholar
Sarthou, G. et al. Growth physiology and fate of diatoms in the ocean: A review. J. Sea Res. 53, 25–42 (2005).
Google Scholar
Pancic, M. et al. Silicified cell walls as a defensive trait in diatoms. Proc. R. Soc. B-Biol. Sci. 286, 9 (2019).
Ianora, A. & Miralto, A. Toxigenic effects of diatoms on grazers, phytoplankton and other microbes: A review. Ecotoxicology 19, 493–511 (2010).
Google Scholar
Lundholm, N. et al. Induction of domoic acid production in diatoms-Types of grazers and diatoms are important. Harmful Algae 79, 64–73 (2018).
Google Scholar
Jonasdottir, S. H. Fatty acid profiles and production in marine phytoplankton. Mar. Drugs 17, 20 (2019).
Google Scholar
Sauterey, B. & Ward, B. Environmental control of marine phytoplankton stoichiometry in the North Atlantic Ocean. Proc. Natl. Acad. Sci. U. S. A. 119, e2114602118 (2022).
Google Scholar
Thomas, P. K. et al. Elemental and biochemical nutrient limitation of zooplankton: A meta-analysis. Ecol. Lett. 25, 2776–2792 (2022).
Google Scholar
Mojica, K. D. A. et al. Phytoplankton community structure in relation to vertical stratification along a north-south gradient in the Northeast Atlantic Ocean. Limnol. Oceanogr. 60, 1498–1521 (2015).
Google Scholar
Armengol, L. et al. Planktonic food web structure and trophic transfer efficiency along a productivity gradient in the tropical and subtropical Atlantic Ocean. Sci. Rep. 9, 19 (2019).
Google Scholar
Gillooly, J. F. Effect of body size and temperature on generation time in zooplankton. J. Plankton Res. 22, 241–251 (2000).
Google Scholar
Turner, J. T. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Prog. Oceanogr. 130, 205–248 (2015).
Google Scholar
Treguer, P. et al. Influence of diatom diversity on the ocean biological carbon pump. Nat. Geosci. 11, 27–37 (2018).
Google Scholar
Ortiz, J. et al. Oligotrophic phytoplankton community effectively adjusts to artificial upwelling regardless of intensity, but differently among upwelling modes. Front. Mar. Sci. https://doi.org/10.3389/fmars.2022.880550 (2022).
Google Scholar
Ortiz, J. et al. Phytoplankton physiology and functional traits under artificial upwelling with varying Si:N. Front. Mar. Sci. https://doi.org/10.3389/fmars.2023.1319875 (2024).
Google Scholar
Spilling, K. et al. Microzooplankton communities and their grazing of phytoplankton under artificial upwelling in the oligotrophic ocean. Front. Mar. Sci. https://doi.org/10.3389/fmars.2023.1286899 (2023).
Google Scholar
Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).
Google Scholar
Persson, J. et al. To be or not to be what you eat: Regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos 119, 741–751 (2010).
Google Scholar
Hessen, D. O. et al. Ecological stoichiometry: An elementary approach using basic principles. Limnol. Oceanogr. 58, 2219–2236 (2013).
Google Scholar
Sherr, E. B. & Sherr, B. F. Heterotrophic dinoflagellates: A significant component of microzooplankton biomass and major grazers of diatoms in the sea. Mar. Ecol.-Prog. Ser. 352, 187–197 (2007).
Google Scholar
Stoecker, D. K. & Capuzzo, J. M. Predation on protozoa—Its importance to zooplankton. J. Plankton Res. 12, 891–908 (1990).
Google Scholar
Kiorboe, T. How zooplankton feed: Mechanisms, traits and trade-offs. Biol. Rev. 86, 311–339 (2011).
Google Scholar
Hessen, D. O. et al. Carbon, sequestration in ecosystems: The role of stoichiometry. Ecology 85, 1179–1192 (2004).
Google Scholar
IPCC (2014) Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland.
Martiny, A. C. et al. Regional variation in the particulate organic carbon to nitrogen ratio in the surface ocean. Glob. Biogeochem. Cycle 27, 723–731 (2013).
Google Scholar
Robinson, C. et al. Mesopelagic zone ecology and biogeochemistry—A synthesis. Deep-Sea Res. II-Top. Stud. Oceanogr. 57, 1504–1518 (2010).
Google Scholar
Anderson, T. R. et al. Metabolic stoichiometry and the fate of excess carbon and nutrients in consumers. Am. Nat. 165, 1–15 (2005).
Google Scholar
Lee, R. F., Hagen, W. & Kattner, G. Lipid storage in marine zooplankton. Mar. Ecol.-Prog. Ser. 307, 273–306 (2006).
Google Scholar
Teuber, L. et al. Who is who in the tropical Atlantic? Functional traits, ecophysiological adaptations and life strategies in tropical calanoid copepods. Prog. Oceanogr. 171, 128–135 (2019).
Google Scholar
Smith, M. D., Knapp, A. K. & Collins, S. L. A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology 90, 3279–3289 (2009).
Google Scholar
Litchman, E., Ohman, M. D. & Kiorboe, T. Trait-based approaches to zooplankton communities. J. Plankton Res. 35, 473–484 (2013).
Google Scholar
Griscom, B. W. et al. Natural climate solutions. Proc. Natl. Acad. Sci. U. S. A. 114, 11645–11650 (2017).
Google Scholar
Wu, J. J., Keller, D. P. & Oschlies, A. Carbon dioxide removal via macroalgae open-ocean mariculture and sinking: an Earth system modeling study. Earth Syst. Dyn. 14, 185–221 (2023).
Google Scholar
Taucher, J. et al. Enhanced silica export in a future ocean triggers global diatom decline. Nature 605, 696–700 (2022).
Google Scholar
Bach, L. T. et al. Effects of elevated CO2 on a natural diatom community in the subtropical NE atlantic. Front. Mar. Sci. 6, 16 (2019).
Google Scholar
Hernandez-Leon, S. Annual cycle of epiplanktonic copepods in Canary Island waters. Fish Oceanogr. 7, 252–257 (1998).
Google Scholar
Turner, J. T. The importance of small planktonic copepods and their roles in pelagic marine food webs. Zool. Stud. 43, 255–266 (2004).
Higgins, H. W., Wright, S. W. & Schluter, L. Quantitative interpretation of chemotaxonomic pigment data. In Phytoplankton Pigments: Characterization, Chemotaxonomy and Applications in Oceanography (eds Roy, S. et al.) (Cambridge University Press, 2011).
Krock, B. et al. LC-MS-MS aboard ship: Tandem mass spectrometry in the search for phycotoxins and novel toxigenic plankton from the North Sea. Anal. Bioanal. Chem. 392, 797–803 (2008).
Google Scholar
Putt, M. & Stoecker, D. K. An experimentally determined carbon—Volume ratio for marine oligotrichous ciliates from estuarine and coastal waters. Limnol. Oceanogr. 34, 1097–1103 (1989).
Google Scholar
Menden-Deuer, S. & Lessard, E. J. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45, 569–579 (2000).
Google Scholar
McCutchan, J. H. et al. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378–390 (2003).
Google Scholar
Dorner, I. et al. Ocean acidification impacts on biomass and fatty acid composition of a post-bloom marine plankton community. Mar. Ecol.-Prog. Ser. 647, 49–64 (2020).
Google Scholar
R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
[ad_2]
Source link